Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ProBoost: a Boosting Method for Probabilistic Classifiers (2209.01611v1)

Published 4 Sep 2022 in cs.LG, cs.AI, and stat.ML

Abstract: ProBoost, a new boosting algorithm for probabilistic classifiers, is proposed in this work. This algorithm uses the epistemic uncertainty of each training sample to determine the most challenging/uncertain ones; the relevance of these samples is then increased for the next weak learner, producing a sequence that progressively focuses on the samples found to have the highest uncertainty. In the end, the weak learners' outputs are combined into a weighted ensemble of classifiers. Three methods are proposed to manipulate the training set: undersampling, oversampling, and weighting the training samples according to the uncertainty estimated by the weak learners. Furthermore, two approaches are studied regarding the ensemble combination. The weak learner herein considered is a standard convolutional neural network, and the probabilistic models underlying the uncertainty estimation use either variational inference or Monte Carlo dropout. The experimental evaluation carried out on MNIST benchmark datasets shows that ProBoost yields a significant performance improvement. The results are further highlighted by assessing the relative achievable improvement, a metric proposed in this work, which shows that a model with only four weak learners leads to an improvement exceeding 12% in this metric (for either accuracy, sensitivity, or specificity), in comparison to the model learned without ProBoost.

Summary

We haven't generated a summary for this paper yet.