Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a Two-Parameter Family of Generalizations of Pascal's Triangle (2209.01377v1)

Published 3 Sep 2022 in math.CO

Abstract: We consider a two-parameter family of triangles whose $(n,k)$-th entry (counting the initial entry as the $(0,0)$-th entry) is the number of tilings of $N$-boards (which are linear arrays of $N$ unit square cells for any nonnegative integer $N$) with unit squares and $(1,m-1;t)$-combs for some fixed $m=1,2,\dots$ and $t=2,3,\dots$ that use $n$ tiles in total of which $k$ are combs. A $(1,m-1;t)$-comb is a tile composed of $t$ unit square sub-tiles (referred to as teeth) placed so that each tooth is separated from the next by a gap of width $m-1$. We show that the entries in the triangle are coefficients of the product of two consecutive generalized Fibonacci polynomials each raised to some nonnegative integer power. We also present a bijection between the tiling of an $(n+(t-1)m)$-board with $k$ $(1,m-1;t)$-combs with the remaining cells filled with squares and the $k$-subsets of ${1,\ldots,n}$ such that no two elements of the subset differ by a multiple of $m$ up to $(t-1)m$. We can therefore give a combinatorial proof of how the number of such $k$-subsets is related to the coefficient of a polynomial. We also derive a recursion relation for the number of closed walks from a particular node on a class of directed pseudographs and apply it obtain an identity concerning the $m=2$, $t=5$ instance of the family of triangles. Further identities of the triangles are also established mostly via combinatorial proof.

Summary

We haven't generated a summary for this paper yet.