Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal empirical Bayes estimation for the Poisson model via minimum-distance methods (2209.01328v2)

Published 3 Sep 2022 in math.ST, stat.ME, and stat.TH

Abstract: The Robbins estimator is the most iconic and widely used procedure in the empirical Bayes literature for the Poisson model. On one hand, this method has been recently shown to be minimax optimal in terms of the regret (excess risk over the Bayesian oracle that knows the true prior) for various nonparametric classes of priors. On the other hand, it has been long recognized in practice that Robbins estimator lacks the desired smoothness and monotonicity of Bayes estimators and can be easily derailed by those data points that were rarely observed before. Based on the minimum-distance distance method, we propose a suite of empirical Bayes estimators, including the classical nonparametric maximum likelihood, that outperform the Robbins method in a variety of synthetic and real data sets and retain its optimality in terms of minimax regret.

Citations (7)

Summary

We haven't generated a summary for this paper yet.