The first fundamental theorem of invariant theory for the quantum queer superalgebra (2209.00811v1)
Abstract: The classical invariant theory for the queer Lie superalgebra is an investigation of the $\mathrm{U}(\mathfrak{q}n)$-invariant sub-superalgebra of the symmetric superalgebra $\mathrm{Sym}(V{\oplus r}\oplus V{*\oplus s})$ for $V=\mathbb{C}{n|n}$. We establish the first fundamental theorem of invariant theory for the quantum queer superalgebra $\mathrm{U}_q(\mathfrak{q}_n)$. The key ingredient is a quantum analog $\mathcal{O}{r,s}$ of the symmetric superalgebra $\mathrm{Sym}(V{\oplus r}\oplus V{*\oplus s})$ that is created as a braided tensor product of a quantization $\mathsf{A}{r,n}$ of $\mathrm{Sym}(V{\oplus r})$ and a quantization $\bar{\mathsf{A}}{s,n}$ of $\mathrm{Sym}(V{*\oplus s})$. Since the quantum queer superalgebra $\mathrm{U}_q(\mathfrak{q}_n)$ is not quasi-triangular, our braided tensor product is created via an explicit intertwining operator instead of the universal $\mathcal{R}$-matrix.