Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Sparse Conformer for Speech Recognition (2209.00260v1)

Published 1 Sep 2022 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: Conformer has achieved impressive results in Automatic Speech Recognition (ASR) by leveraging transformer's capturing of content-based global interactions and convolutional neural network's exploiting of local features. In Conformer, two macaron-like feed-forward layers with half-step residual connections sandwich the multi-head self-attention and convolution modules followed by a post layer normalization. We improve Conformer's long-sequence representation ability in two directions, \emph{sparser} and \emph{deeper}. We adapt a sparse self-attention mechanism with $\mathcal{O}(L\text{log}L)$ in time complexity and memory usage. A deep normalization strategy is utilized when performing residual connections to ensure our training of hundred-level Conformer blocks. On the Japanese CSJ-500h dataset, this deep sparse Conformer achieves respectively CERs of 5.52\%, 4.03\% and 4.50\% on the three evaluation sets and 4.16\%, 2.84\% and 3.20\% when ensembling five deep sparse Conformer variants from 12 to 16, 17, 50, and finally 100 encoder layers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xianchao Wu (16 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.