Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HyTGraph: GPU-Accelerated Graph Processing with Hybrid Transfer Management (2208.14935v1)

Published 31 Aug 2022 in cs.DC

Abstract: Processing large graphs with memory-limited GPU needs to resolve issues of host-GPU data transfer, which is a key performance bottleneck. Existing GPU-accelerated graph processing frameworks reduce the data transfers by managing the active subgraph transfer at runtime. Some frameworks adopt explicit transfer management approaches based on explicit memory copy with filter or compaction. In contrast, others adopt implicit transfer management approaches based on on-demand access with zero-copy or unified-memory. Having made intensive analysis, we find that as the active vertices evolve, the performance of the two approaches varies in different workloads. Due to heavy redundant data transfers, high CPU compaction overhead, or low bandwidth utilization, adopting a single approach often results in suboptimal performance. In this work, we propose a hybrid transfer management approach to take the merits of both the two approaches at runtime, with an objective to achieve the shortest execution time in each iteration. Based on the hybrid approach, we present HytGraph, a GPU-accelerated graph processing framework, which is empowered by a set of effective task scheduling optimizations to improve the performance. Our experimental results on real-world and synthesized graphs demonstrate that HyTGraph achieves up to 10.27X speedup over existing GPU-accelerated graph processing systems including Grus, Subway, and EMOGI.

Citations (4)

Summary

We haven't generated a summary for this paper yet.