Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Listen2YourHeart: A Self-Supervised Approach for Detecting Murmur in Heart-Beat Sounds (2208.14845v4)

Published 31 Aug 2022 in cs.LG and eess.SP

Abstract: Heart murmurs are abnormal sounds present in heartbeats, caused by turbulent blood flow through the heart. The PhysioNet 2022 challenge targets automatic detection of murmur from audio recordings of the heart and automatic detection of normal vs. abnormal clinical outcome. The recordings are captured from multiple locations around the heart. Our participation investigates the effectiveness of selfsupervised learning for murmur detection. We train the layers of a backbone CNN in a self-supervised way with data from both this year's and the 2016 challenge. We use two different augmentations on each training sample, and normalized temperature-scaled cross-entropy loss. We experiment with different augmentations to learn effective phonocardiogram representations. To build the final detectors we train two classification heads, one for each challenge task. We present evaluation results for all combinations of the available augmentations, and for our multipleaugmentation approach. Our team's, Listen2YourHeart, SSL murmur detection classifier received a weighted accuracy score of 0.737 (ranked 13th out of 40 teams) and an outcome identification challenge cost score of 11946 (ranked 7th out of 39 teams) on the hidden test set.

Citations (11)

Summary

We haven't generated a summary for this paper yet.