Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Multilevel and Memetic Signed Graph Clustering (2208.13618v3)

Published 29 Aug 2022 in cs.DS

Abstract: In this study, we address the complex issue of graph clustering in signed graphs, which are characterized by positive and negative weighted edges representing attraction and repulsion among nodes, respectively. The primary objective is to efficiently partition the graph into clusters, ensuring that nodes within a cluster are closely linked by positive edges while minimizing negative edge connections between them. To tackle this challenge, we first develop a scalable multilevel algorithm based on label propagation and FM local search. Then we develop a memetic algorithm that incorporates a multilevel strategy. This approach meticulously combines elements of evolutionary algorithms with local refinement techniques, aiming to explore the search space more effectively than repeated executions. Our experimental analysis reveals that this our new algorithms significantly outperforms existing state-of-the-art algorithms. For example, our memetic algorithm can reach solution quality of the previous state-of-the-art algorithm up to four orders of magnitude faster.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. An enhanced multi-objective evolutionary algorithm with decomposition for signed community detection problem. In 2020 2nd Annual International Conference on Information and Sciences (AiCIS), pages 45–50. IEEE, 2020. 10.1109/AiCIS51645.2020.00017. URL https://doi.org/10.1109/AiCIS51645.2020.00017.
  2. C. C. Aggarwal. An introduction to social network data analytics. In C. C. Aggarwal, editor, Social Network Data Analytics, pages 1–15. Springer, 2011. 10.1007/978-1-4419-8462-3_1. URL https://doi.org/10.1007/978-1-4419-8462-3_1.
  3. A generalized framework for agglomerative clustering of signed graphs applied to instance segmentation. CoRR, abs/1906.11713, 2019. URL http://arxiv.org/abs/1906.11713.
  4. Cut, glue, & cut: A fast, approximate solver for multicut partitioning. In CVPR, pages 73–80. IEEE Computer Society, 2014.
  5. Fusion moves for correlation clustering. In CVPR, pages 3507–3516. IEEE Computer Society, 2015.
  6. Recent advances in graph partitioning. In L. Kliemann and P. Sanders, editors, Algorithm Engineering - Selected Results and Surveys, volume 9220 of Lecture Notes in Computer Science, pages 117–158. 2016. 10.1007/978-3-319-49487-6_4. URL https://doi.org/10.1007/978-3-319-49487-6_4.
  7. More recent advances in (hyper)graph partitioning. ACM Comput. Surv., 55(12), 2023. ISSN 0360-0300. 10.1145/3571808. URL https://doi.org/10.1145/3571808.
  8. A memetic algorithm for community detection in signed networks. IEEE Access, 8:123585–123602, 2020. 10.1109/ACCESS.2020.3006108. URL https://doi.org/10.1109/ACCESS.2020.3006108.
  9. The cityscapes dataset for semantic urban scene understanding. In CVPR, pages 3213–3223. IEEE Computer Society, 2016.
  10. Toward optimal community detection: From trees to general weighted networks. Internet Math., 11(3):181–200, 2015. 10.1080/15427951.2014.950875. URL https://doi.org/10.1080/15427951.2014.950875.
  11. B. Doerr and M. Fouz. Asymptotically optimal randomized rumor spreading. In Proc. of the 38th Intl. Colloquium on Automata, Languages and Programming, Proc., Part II, volume 6756 of LNCS, pages 502–513. Springer, 2011. 10.1007/978-3-642-22012-8_40. URL https://doi.org/10.1007/978-3-642-22012-8_40.
  12. A linear-time heuristic for improving network partitions. In Proc. of the 19th Design Automation Conference, DAC, pages 175–181. ACM/IEEE, 1982. 10.1145/800263.809204. URL https://doi.org/10.1145/800263.809204.
  13. J. Gallier. Spectral theory of unsigned and signed graphs. applications to graph clustering: a survey. CoRR, abs/1601.04692, 2016. URL http://arxiv.org/abs/1601.04692.
  14. Messy genetic algorithms: Motivation, analysis, and first results. Complex Syst., 3(5), 1989. URL http://www.complex-systems.com/abstracts/v03_i05_a05.html.
  15. Analysis of community structure in networks of correlated data. Physical Review E, 80(1):016114, 2009. 10.1103/PhysRevE.80.016114. URL https://doi.org/10.1103/PhysRevE.80.016114.
  16. Deep multilevel graph partitioning. In P. Mutzel, R. Pagh, and G. Herman, editors, 29th Annual European Symp. on Algorithms, ESA 2021, Sep. 6-8, 2021, Lisbon, Portugal, volume 204 of LIPIcs, pages 48:1–48:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. 10.4230/LIPIcs.ESA.2021.48. URL https://doi.org/10.4230/LIPIcs.ESA.2021.48.
  17. M. Grötschel and Y. Wakabayashi. A cutting plane algorithm for a clustering problem. Math. Program., 45(1-3):59–96, 1989. 10.1007/BF01589097. URL https://doi.org/10.1007/BF01589097.
  18. Fast clustering for signed graphs based on random walk gap. Soc. Networks, 60:113–128, 2020. 10.1016/j.socnet.2018.08.008. URL https://doi.org/10.1016/j.socnet.2018.08.008.
  19. A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis., 115(2):155–184, 2015.
  20. A. Karataş and S. Şahin. Application areas of community detection: A review. In Intl. Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), pages 65–70, 2018. 10.1109/IBIGDELFT.2018.8625349.
  21. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392, 1998. 10.1137/S1064827595287997. URL https://doi.org/10.1137/S1064827595287997.
  22. Recent trends in graph decomposition (dagstuhl seminar 23331). Dagstuhl Reports, 13(8):1–45, 2023.
  23. Efficient decomposition of image and mesh graphs by lifted multicuts. In ICCV, pages 1751–1759. IEEE Computer Society, 2015a.
  24. Efficient decomposition of image and mesh graphs by lifted multicuts. In Int. Conf. on Computer Vision, ICCV, pages 1751–1759. IEEE Computer Society, 2015b. 10.1109/ICCV.2015.204. URL https://doi.org/10.1109/ICCV.2015.204.
  25. A. Knyazev. On spectral partitioning of signed graphs. In F. Manne, P. Sanders, and S. Toledo, editors, Proceedings of the Eighth SIAM Workshop on Combinatorial Scientific Computing, CSC 2018, Bergen, Norway, June 6-8, 2018, pages 11–22. SIAM, 2018. 10.1137/1.9781611975215.2. URL https://doi.org/10.1137/1.9781611975215.2.
  26. Concise integer linear programming formulation for clique partitioning problems. Constraints An Int. J., 27(1):99–115, 2022. 10.1007/s10601-022-09326-z. URL https://doi.org/10.1007/s10601-022-09326-z.
  27. J. Kunegis. KONECT: the koblenz network collection. In Intl. World Wide Web Conf., WWW, pages 1343–1350. Intl. World Wide Web Conf. Steering Committee / ACM, 2013. 10.1145/2487788.2488173. URL https://doi.org/10.1145/2487788.2488173.
  28. Spectral analysis of signed graphs for clustering, prediction and visualization. In Proceedings of the SIAM International Conference on Data Mining, SDM 2010, April 29 - May 1, 2010, Columbus, Ohio, USA, pages 559–570. SIAM, 2010. 10.1137/1.9781611972801.49. URL https://doi.org/10.1137/1.9781611972801.49.
  29. J. Leskovec. Stanford Network Analysis Package (SNAP). URL http://snap.stanford.edu/data.
  30. A comparative study of local search algorithms for correlation clustering. In V. Roth and T. Vetter, editors, Pattern Recognition, pages 103–114, Cham, 2017. Springer International Publishing. ISBN 978-3-319-66709-6.
  31. Spectral clustering of signed graphs via matrix power means. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 4526–4536. PMLR, 2019. URL http://proceedings.mlr.press/v97/mercado19a.html.
  32. E. Mezura-Montes. Evolutionary Computation. A Unified Approach. kenneth a. de jong. (2006, MIT press.) 256 pages. Artif. Life, 13(4):423–426, 2007. 10.1162/artl.2007.13.4.423. URL https://doi.org/10.1162/artl.2007.13.4.423.
  33. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, Third Revised and Extended Edition. Springer, 1996. ISBN 978-3-540-60676-5. 10.1007/978-3-662-03315-9. URL https://doi.org/10.1007/978-3-662-03315-9.
  34. Genetic algorithms, tournament selection, and the effects of noise. Complex Syst., 9(3), 1995. URL http://www.complex-systems.com/abstracts/v09_i03_a02.html.
  35. A. Miyauchi and N. Sukegawa. Redundant constraints in the standard formulation for the clique partitioning problem. Optim. Lett., 9(1):199–207, 2015. 10.1007/s11590-014-0754-6. URL https://doi.org/10.1007/s11590-014-0754-6.
  36. Exact clustering via integer programming and maximum satisfiability. In S. A. McIlraith and K. Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1387–1394. AAAI Press, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16176.
  37. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E, 76:036106, Sep 2007. 10.1103/PhysRevE.76.036106. URL https://link.aps.org/doi/10.1103/PhysRevE.76.036106.
  38. P. Sanders and C. Schulz. Engineering multilevel graph partitioning algorithms. In C. Demetrescu and M. M. Halldórsson, editors, Algorithms - ESA 2011 - 19th Annual European Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings, volume 6942 of Lecture Notes in Computer Science, pages 469–480. Springer, 2011. 10.1007/978-3-642-23719-5_40. URL https://doi.org/10.1007/978-3-642-23719-5_40.
  39. P. Sanders and C. Schulz. Distributed evolutionary graph partitioning. In Proc. of the Meeting on Algorithm Engineering & Experiments, ALENEX, pages 16–29. SIAM / Omnipress, 2012. 10.1137/1.9781611972924.2. URL https://doi.org/10.1137/1.9781611972924.2.
  40. Genetic algorithms. In Search methodologies, pages 93–117. 2014. URL http://eprints.ukh.ac.id/id/eprint/271/1/2014_Book_SearchMethodologies.pdf#page=106. Springer.
  41. C. Schulz and D. Strash. Graph partitioning: Formulations and applications to big data. In S. Sakr and A. Y. Zomaya, editors, Encyclopedia of Big Data Technologies. Springer, 2019. 10.1007/978-3-319-63962-8_312-2. URL https://doi.org/10.1007/978-3-319-63962-8_312-2.
  42. Structured prediction problem archive. CoRR, abs/2202.03574, 2022.
  43. Y. Wakabayashi. Aggregation of binary relations: algorithmic and polyhedral investigations. PhD thesis, Uni. of Augsburg, Germany, 1986.
  44. C. Walshaw. Multilevel refinement for combinatorial optimisation problems. Ann. Oper. Res., 131(1-4):325–372, 2004. 10.1023/B:ANOR.0000039525.80601.15. URL https://doi.org/10.1023/B:ANOR.0000039525.80601.15.
  45. C. Walshaw and M. Cross. Mesh partitioning: A multilevel balancing and refinement algorithm. SIAM J. Sci. Comput., 22(1):63–80, 2000. 10.1137/S1064827598337373. URL https://doi.org/10.1137/S1064827598337373.
  46. C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning Software – An Overview. In Mesh Partitioning Techniques and Domain Decomposition Techniques, pages 27–58. 2007. ISBN 978-1-874672-29-6. URL {https://chriswalshaw.co.uk/papers/fulltext/WalshawMPDD07.pdf}.
  47. A novel evolutionary algorithm on communities detection in signed networks. Physica A: Statistical Mechanics and its Applications, 503:938–946, 2018. 10.1016/j.physa.2018.08.112. URL https://doi.org/10.1016/j.physa.2018.08.112.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com