Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Periodic points of rational functions over finite fields (2208.13281v3)

Published 28 Aug 2022 in math.NT and math.DS

Abstract: For $q$ a prime power and $\phi$ a rational function with coefficients in $\mathbb{F}_q$, let $p(q,\phi)$ be the proportion of $\mathbb{P}1(\mathbb{F}_q)$ that is periodic with respect to $\phi$. And if $d$ is a positive integer, let $Q_d$ be the set of prime powers coprime to $d!$ and let $\mathcal{P}(d,q)$ be the expected value of $p(q,\phi)$ as $\phi$ ranges over rational functions with coefficients in $\mathbb{F}_q$ of degree $d$. We prove that if $d$ is a positive integer no less than $2$, then $\mathcal{P}(d,q)$ tends to 0 as $q$ increases in $Q_d$. This theorem generalizes our previous work, which held only for quadratic polynomials, and only in fixed characteristic. To deduce this result, we prove a uniformity theorem on specializations of dynamical systems of rational functions with coefficients in certain finitely-generated algebras over residually finite Dedekind domains. This specialization theorem generalizes our previous work, which held only for algebras of dimension one.

Summary

We haven't generated a summary for this paper yet.