Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shooting method for solving two-point boundary value problems in ODEs numerically (2208.13221v1)

Published 28 Aug 2022 in physics.flu-dyn, cs.NA, math.NA, and nlin.PS

Abstract: Boundary value problems in ODEs arise in modelling many physical situations from microscale to mega scale. Such two-point boundary value problems (BVPs) are complex and often possess no analytical closed form solutions. So, one has to rely on approximating the actual solution numerically to a desired accuracy. To approximate the solution numerically, several numerical methods are available in the literature. In this chapter, we explore on finding numerical solutions of two-point BVPs arising in higher order ODEs using the shooting technique. To solve linear BVPs, the shooting technique is derived as an application of linear algebra. We then describe the nonlinear shooting technique using Newton-Kantorovich theorem in dimension n>1. In the one-dimensional case, Newton-Raphson iterates have rapid convergence. This is not the case in higher dimensions. Nevertheless, we discuss a class of BVPs for which the rate of convergence of the underlying Newton iterates is rapid. Some explicit examples are discussed to demonstrate the implementation of the present numerical scheme.

Citations (3)

Summary

We haven't generated a summary for this paper yet.