Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information FOMO: The unhealthy fear of missing out on information. A method for removing misleading data for healthier models (2208.13080v3)

Published 27 Aug 2022 in cs.LG, physics.data-an, and stat.ML

Abstract: Misleading or unnecessary data can have out-sized impacts on the health or accuracy of Machine Learning (ML) models. We present a Bayesian sequential selection method, akin to Bayesian experimental design, that identifies critically important information within a dataset, while ignoring data that is either misleading or brings unnecessary complexity to the surrogate model of choice. Our method improves sample-wise error convergence and eliminates instances where more data leads to worse performance and instabilities of the surrogate model, often termed sample-wise ``double descent''. We find these instabilities are a result of the complexity of the underlying map and linked to extreme events and heavy tails. Our approach has two key features. First, the selection algorithm dynamically couples the chosen model and data. Data is chosen based on its merits towards improving the selected model, rather than being compared strictly against other data. Second, a natural convergence of the method removes the need for dividing the data into training, testing, and validation sets. Instead, the selection metric inherently assesses testing and validation error through global statistics of the model. This ensures that key information is never wasted in testing or validation. The method is applied using both Gaussian process regression and deep neural network surrogate models.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets