Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incrementality Bidding and Attribution (2208.12809v1)

Published 25 Aug 2022 in cs.LG

Abstract: The causal effect of showing an ad to a potential customer versus not, commonly referred to as "incrementality", is the fundamental question of advertising effectiveness. In digital advertising three major puzzle pieces are central to rigorously quantifying advertising incrementality: ad buying/bidding/pricing, attribution, and experimentation. Building on the foundations of machine learning and causal econometrics, we propose a methodology that unifies these three concepts into a computationally viable model of both bidding and attribution which spans the randomization, training, cross validation, scoring, and conversion attribution of advertising's causal effects. Implementation of this approach is likely to secure a significant improvement in the return on investment of advertising.

Citations (20)

Summary

We haven't generated a summary for this paper yet.