Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Edge Behavior of Higher Complex-Dimensional Determinantal Point Processes (2208.12676v3)

Published 26 Aug 2022 in math-ph, math.CA, math.CV, math.MP, and math.PR

Abstract: As recently proved in generality by Hedenmalm and Wennman, it is a universal behavior of complex random normal matrix models that one finds a complementary error function behavior at the boundary (also called edge) of the droplet as the matrix size increases. Such behavior is seen both in the density of the eigenvalues, and the correlation kernel, where the Faddeeva plasma kernel emerges. These results are neatly expressed with the help of the outward unit normal vector on the edge. We prove that such universal behaviors transcend this class of random normal matrices, being also valid in a specific ``elliptic'' class of determinantal point processes defined on $\mathbb Cd$, which are higher dimensional generalizations of the determinantal point processes describing the eigenvalues of the complex Ginibre ensemble and the complex elliptic Ginibre ensemble. These models describe a system of particles in $\mathbb Cd$ with mutual repulsion, that are confined to the origin by an external field $\mathscr V(z) = |z|2 - \tau \operatorname{Re}(z_12+\ldots+z_d2)$, where $0\leq \tau<1$. Their average density of particles converges to a uniform law on a $2d$-dimensional ellipsoidal region. It is on the hyperellipsoid bounding this region that we find a complementary error function behavior and the Faddeeva plasma kernel. To the best of our knowledge, this is the first instance of the Faddeeva plasma kernel emerging in a higher dimensional model. The results provide evidence for a possible edge universality theorem for determinantal point processes on $\mathbb Cd$.

Summary

We haven't generated a summary for this paper yet.