Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Graph Convolution for Signed Directed Graphs (2208.11511v3)

Published 23 Aug 2022 in cs.LG and cs.AI

Abstract: A signed directed graph is a graph with sign and direction information on the edges. Even though signed directed graphs are more informative than unsigned or undirected graphs, they are more complicated to analyze and have received less research attention. This paper investigates a spectral graph convolution model to fully utilize the information embedded in signed directed edges. We propose a novel complex Hermitian adjacency matrix that encodes graph information via complex numbers. Compared to a simple connection-based adjacency matrix, the complex Hermitian can represent edge direction, sign, and connectivity via its phases and magnitudes. Then, we define a magnetic Laplacian of the proposed adjacency matrix and prove that it is positive semi-definite (PSD) for the analyses using spectral graph convolution. We perform extensive experiments on four real-world datasets. Our experiments show that the proposed scheme outperforms several state-of-the-art techniques.

Citations (3)

Summary

We haven't generated a summary for this paper yet.