Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence bounds for local least squares approximation (2208.10954v2)

Published 23 Aug 2022 in math.NA, cs.NA, and stat.ML

Abstract: We consider the problem of approximating a function in a general nonlinear subset of $L2$, when only a weighted Monte Carlo estimate of the $L2$-norm can be computed. Of particular interest in this setting is the concept of sample complexity, the number of sample points that are necessary to achieve a prescribed error with high probability. Reasonable worst-case bounds for this quantity exist only for particular model classes, like linear spaces or sets of sparse vectors. For more general sets, like tensor networks or neural networks, the currently existing bounds are very pessimistic. By restricting the model class to a neighbourhood of the best approximation, we can derive improved worst-case bounds for the sample complexity. When the considered neighbourhood is a manifold with positive local reach, its sample complexity can be estimated by means of the sample complexities of the tangent and normal spaces and the manifold's curvature.

Citations (2)

Summary

We haven't generated a summary for this paper yet.