Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Floor Field: Transferring people flow predictions across environments (2208.10851v2)

Published 23 Aug 2022 in cs.RO and cs.LG

Abstract: Mapping people dynamics is a crucial skill for robots, because it enables them to coexist in human-inhabited environments. However, learning a model of people dynamics is a time consuming process which requires observation of large amount of people moving in an environment. Moreover, approaches for mapping dynamics are unable to transfer the learned models across environments: each model is only able to describe the dynamics of the environment it has been built in. However, the impact of architectural geometry on people's movement can be used to anticipate their patterns of dynamics, and recent work has looked into learning maps of dynamics from occupancy. So far however, approaches based on trajectories and those based on geometry have not been combined. In this work we propose a novel Bayesian approach to learn people dynamics able to combine knowledge about the environment geometry with observations from human trajectories. An occupancy-based deep prior is used to build an initial transition model without requiring any observations of pedestrian; the model is then updated when observations become available using Bayesian inference. We demonstrate the ability of our model to increase data efficiency and to generalize across real large-scale environments, which is unprecedented for maps of dynamics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware robot navigation: A survey,” Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1726–1743, 2013.
  2. T. P. Kucner, M. Magnusson, S. Mghames, L. Palmieri, F. Verdoja, C. S. Swaminathan, T. Krajník, E. Schaffernicht, N. Bellotto, M. Hanheide, and A. J. Lilienthal, “Survey of maps of dynamics for mobile robots,” The International Journal of Robotics Research, vol. 42, no. 11, pp. 977–1006, 2023.
  3. T. Lai, W. Zhi, and F. Ramos, “Occ-traj120: Occupancy maps with associated trajectories,” CoRR, 2019.
  4. W. Zhi, T. Lai, L. Ott, and F. Ramos, “Trajectory Generation in New Environments from Past Experiences,” in 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sep. 2021, pp. 7911–7918.
  5. J. Doellinger, M. Spies, and W. Burgard, “Predicting Occupancy Distributions of Walking Humans With Convolutional Neural Networks,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1522–1528, Jul. 2018.
  6. J. Doellinger, V. S. Prabhakaran, L. Fu, and M. Spies, “Environment-Aware Multi-Target Tracking of Pedestrians,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1831–1837, Apr. 2019.
  7. M. Bennewitz, W. Burgard, and S. Thrun, “Using em to learn motion behaviors of persons with mobile robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, 9 2002, pp. 502–507 vol.1.
  8. B. T. Morris and M. M. Trivedi, “A survey of vision-based trajectory learning and analysis for surveillance,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 8, pp. 1114–1127, 8 2008.
  9. R. Senanayake and F. Ramos, “Bayesian hilbert maps for dynamic continuous occupancy mapping,” in Proceedings of the 1st Annual Conference on Robot Learning, ser. Proceedings of Machine Learning Research, S. Levine, V. Vanhoucke, and K. Goldberg, Eds., vol. 78.   PMLR, 2017, pp. 458–471.
  10. S. Molina, G. Cielniak, T. Krajník, and T. Duckett, “Modelling and predicting rhythmic flow patterns in dynamic environments,” in Towards Autonomous Robotic Systems, M. Giuliani, T. Assaf, and M. E. Giannaccini, Eds.   Cham: Springer International Publishing, 2018, pp. 135–146.
  11. J. Shi and T. P. Kucner, “Learning State-Space Models for Mapping Spatial Motion Patterns,” in 2023 European Conference on Mobile Robots (ECMR), Sep. 2023, pp. 1–6.
  12. T. Krajnik, J. Pulido Fentanes, J. Santos, T. Duckett et al., “Frequency map enhancement: Introducing dynamics into static environment models,” ICRA Workshop AI for Long-Term Autonomy, 2016.
  13. J. Saarinen, H. Andreasson, and A. J. Lilienthal, “Independent Markov chain occupancy grid maps for representation of dynamic environment,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, 2012.
  14. C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz, “Simulation of pedestrian dynamics using a two-dimensional cellular automaton,” Physica A: Statistical Mechanics and its Applications, vol. 295, no. 3, pp. 507–525, 2001.
  15. T. P. Kucner, M. Magnusson, E. Schaffernicht, V. H. Bennetts, and A. J. Lilienthal, “Enabling flow awareness for mobile robots in partially observable environments,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1093–1100, 4 2017.
  16. D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical review E, vol. 51, no. 5, p. 4282, 1995.
  17. A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and K. O. Arras, “Human motion trajectory prediction: A survey,” The International Journal of Robotics Research, vol. 39, no. 8, pp. 895–935, 2020.
  18. H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in 1985 IEEE International Conference on Robotics and Automation Proceedings, Mar. 1985, pp. 116–121.
  19. T. P. Minka, “Bayesian inference, entropy, and the multinomial distribution,” Jan. 2003, tutorial. [Online]. Available: https://tminka.github.io/papers/minka-multinomial.pdf
  20. S. Jégou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation,” arXiv:1611.09326 [cs], Oct. 2017.
  21. D. Brščić, T. Kanda, T. Ikeda, and T. Miyashita, “Person tracking in large public spaces using 3-d range sensors,” IEEE Transactions on Human-Machine Systems, vol. 43, no. 6, pp. 522–534, 2013.
  22. C. Dondrup, N. Bellotto, F. Jovan, and M. Hanheide, “Real-Time Multisensor People Tracking for Human-Robot Spatial Interaction,” in International Conference on Robotics and Automation (ICRA) - Workshop on Machine Learning for Social Robotics, 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com