Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CRCNet: Few-shot Segmentation with Cross-Reference and Region-Global Conditional Networks (2208.10761v1)

Published 23 Aug 2022 in cs.CV

Abstract: Few-shot segmentation aims to learn a segmentation model that can be generalized to novel classes with only a few training images. In this paper, we propose a Cross-Reference and Local-Global Conditional Networks (CRCNet) for few-shot segmentation. Unlike previous works that only predict the query image's mask, our proposed model concurrently makes predictions for both the support image and the query image. Our network can better find the co-occurrent objects in the two images with a cross-reference mechanism, thus helping the few-shot segmentation task. To further improve feature comparison, we develop a local-global conditional module to capture both global and local relations. We also develop a mask refinement module to refine the prediction of the foreground regions recurrently. Experiments on the PASCAL VOC 2012, MS COCO, and FSS-1000 datasets show that our network achieves new state-of-the-art performance.

Citations (20)

Summary

We haven't generated a summary for this paper yet.