Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Latent Neural Stochastic Differential Equations for Change Point Detection (2208.10317v2)

Published 22 Aug 2022 in cs.LG

Abstract: Automated analysis of complex systems based on multiple readouts remains a challenge. Change point detection algorithms are aimed to locating abrupt changes in the time series behaviour of a process. In this paper, we present a novel change point detection algorithm based on Latent Neural Stochastic Differential Equations (SDE). Our method learns a non-linear deep learning transformation of the process into a latent space and estimates a SDE that describes its evolution over time. The algorithm uses the likelihood ratio of the learned stochastic processes in different timestamps to find change points of the process. We demonstrate the detection capabilities and performance of our algorithm on synthetic and real-world datasets. The proposed method outperforms the state-of-the-art algorithms on the majority of our experiments.

Summary

We haven't generated a summary for this paper yet.