2000 character limit reached
Supercongruences involving Motzkin numbers and central trinomial coefficients (2208.10275v1)
Published 22 Aug 2022 in math.NT and math.CO
Abstract: Let $M_n$ and $T_n$ denote the $n$th Motzkin number and the $n$th central trinomial coefficient respectively. We prove that for any prime $p\ge 5$, \begin{align*} &\sum_{k=0}{p-1}M_k2\equiv \left(\frac{p}{3}\right)\left(2-6p\right)\pmod{p2},\ &\sum_{k=0}{p-1}kM_k2\equiv \left(\frac{p}{3}\right)\left(9p-1\right)\pmod{p2},\ &\sum_{k=0}{p-1}T_kM_k\equiv \frac{4}{3}\left(\frac{p}{3}\right)+\frac{p}{6}\left(1-9\left(\frac{p}{3}\right)\right)\pmod{p2}, \end{align*} where $\left(-\right)$ is the Legendre symbol. These results confirm three 12-year-old supercongruence conjectures of Z.-W. Sun.