Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Approach to Spatio-Temporal Data Release with User-Level Differential Privacy (2208.09744v1)

Published 20 Aug 2022 in cs.DB and cs.CR

Abstract: Several companies (e.g., Meta, Google) have initiated "data-for-good" projects where aggregate location data are first sanitized and released publicly, which is useful to many applications in transportation, public health (e.g., COVID-19 spread) and urban planning. Differential privacy (DP) is the protection model of choice to ensure the privacy of the individuals who generated the raw location data. However, current solutions fail to preserve data utility when each individual contributes multiple location reports (i.e., under user-level privacy). To offset this limitation, public releases by Meta and Google use high privacy budgets (e.g., $\epsilon$=10-100), resulting in poor privacy. We propose a novel approach to release spatio-temporal data privately and accurately. We employ the pattern recognition power of neural networks, specifically variational auto-encoders (VAE), to reduce the noise introduced by DP mechanisms such that accuracy is increased, while the privacy requirement is still satisfied. Our extensive experimental evaluation on real datasets shows the clear superiority of our approach compared to benchmarks.

Citations (10)

Summary

We haven't generated a summary for this paper yet.