Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta Learning for High-dimensional Ising Model Selection Using $\ell_1$-regularized Logistic Regression (2208.09539v1)

Published 19 Aug 2022 in cs.LG, math.ST, and stat.TH

Abstract: In this paper, we consider the meta learning problem for estimating the graphs associated with high-dimensional Ising models, using the method of $\ell_1$-regularized logistic regression for neighborhood selection of each node. Our goal is to use the information learned from the auxiliary tasks in the learning of the novel task to reduce its sufficient sample complexity. To this end, we propose a novel generative model as well as an improper estimation method. In our setting, all the tasks are \emph{similar} in their \emph{random} model parameters and supports. By pooling all the samples from the auxiliary tasks to \emph{improperly} estimate a single parameter vector, we can recover the true support union, assumed small in size, with a high probability with a sufficient sample complexity of $\Omega(1) $ per task, for $K = \Omega(d3 \log p ) $ tasks of Ising models with $p$ nodes and a maximum neighborhood size $d$. Then, with the support for the novel task restricted to the estimated support union, we prove that consistent neighborhood selection for the novel task can be obtained with a reduced sufficient sample complexity of $\Omega(d3 \log d)$.

Summary

We haven't generated a summary for this paper yet.