Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Co-scheduling Ensembles of In Situ Workflows (2208.09190v1)

Published 19 Aug 2022 in cs.DC

Abstract: Molecular dynamics (MD) simulations are widely used to study large-scale molecular systems. HPC systems are ideal platforms to run these studies, however, reaching the necessary simulation timescale to detect rare processes is challenging, even with modern supercomputers. To overcome the timescale limitation, the simulation of a long MD trajectory is replaced by multiple short-range simulations that are executed simultaneously in an ensemble of simulations. Analyses are usually co-scheduled with these simulations to efficiently process large volumes of data generated by the simulations at runtime, thanks to in situ techniques. Executing a workflow ensemble of simulations and their in situ analyses requires efficient co-scheduling strategies and sophisticated management of computational resources so that they are not slowing down each other. In this paper, we propose an efficient method to co-schedule simulations and in situ analyses such that the makespan of the workflow ensemble is minimized. We present a novel approach to allocate resources for a workflow ensemble under resource constraints by using a theoretical framework modeling the workflow ensemble's execution. We evaluate the proposed approach using an accurate simulator based on the WRENCH simulation framework on various workflow ensemble configurations. Results demonstrate the significance of co-scheduling simulations and in situ analyses that couple data together to benefit from data locality, in which inefficient scheduling decisions can lead up to a factor 30 slowdown in makespan.

Citations (2)

Summary

We haven't generated a summary for this paper yet.