Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multi-Modal Wildfire Prediction and Personalized Early-Warning System Based on a Novel Machine Learning Framework (2208.09079v1)

Published 18 Aug 2022 in cs.LG, cs.AI, cs.CV, and cs.CY

Abstract: Wildfires are increasingly impacting the environment, human health and safety. Among the top 20 California wildfires, those in 2020-2021 burned more acres than the last century combined. California's 2018 wildfire season caused damages of $148.5 billion. Among millions of impacted people, those living with disabilities (around 15% of the world population) are disproportionately impacted due to inadequate means of alerts. In this project, a multi-modal wildfire prediction and personalized early warning system has been developed based on an advanced machine learning architecture. Sensor data from the Environmental Protection Agency and historical wildfire data from 2012 to 2018 have been compiled to establish a comprehensive wildfire database, the largest of its kind. Next, a novel U-Convolutional-LSTM (Long Short-Term Memory) neural network was designed with a special architecture for extracting key spatial and temporal features from contiguous environmental parameters indicative of impending wildfires. Environmental and meteorological factors were incorporated into the database and classified as leading indicators and trailing indicators, correlated to risks of wildfire conception and propagation respectively. Additionally, geological data was used to provide better wildfire risk assessment. This novel spatio-temporal neural network achieved >97% accuracy vs. around 76% using traditional convolutional neural networks, successfully predicting 2018's five most devastating wildfires 5-14 days in advance. Finally, a personalized early warning system, tailored to individuals with sensory disabilities or respiratory exacerbation conditions, was proposed. This technique would enable fire departments to anticipate and prevent wildfires before they strike and provide early warnings for at-risk individuals for better preparation, thereby saving lives and reducing economic damages.

Citations (2)

Summary

We haven't generated a summary for this paper yet.