Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Differentiable Architecture Search with Random Features (2208.08835v1)

Published 18 Aug 2022 in cs.CV

Abstract: Differentiable architecture search (DARTS) has significantly promoted the development of NAS techniques because of its high search efficiency and effectiveness but suffers from performance collapse. In this paper, we make efforts to alleviate the performance collapse problem for DARTS from two aspects. First, we investigate the expressive power of the supernet in DARTS and then derive a new setup of DARTS paradigm with only training BatchNorm. Second, we theoretically find that random features dilute the auxiliary connection role of skip-connection in supernet optimization and enable search algorithm focus on fairer operation selection, thereby solving the performance collapse problem. We instantiate DARTS and PC-DARTS with random features to build an improved version for each named RF-DARTS and RF-PCDARTS respectively. Experimental results show that RF-DARTS obtains \textbf{94.36\%} test accuracy on CIFAR-10 (which is the nearest optimal result in NAS-Bench-201), and achieves the newest state-of-the-art top-1 test error of \textbf{24.0\%} on ImageNet when transferring from CIFAR-10. Moreover, RF-DARTS performs robustly across three datasets (CIFAR-10, CIFAR-100, and SVHN) and four search spaces (S1-S4). Besides, RF-PCDARTS achieves even better results on ImageNet, that is, \textbf{23.9\%} top-1 and \textbf{7.1\%} top-5 test error, surpassing representative methods like single-path, training-free, and partial-channel paradigms directly searched on ImageNet.

Citations (7)

Summary

We haven't generated a summary for this paper yet.