Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Establishing Robust Consistency in Answer Set Programs (2208.08157v1)

Published 17 Aug 2022 in cs.AI

Abstract: Answer set programs used in real-world applications often require that the program is usable with different input data. This, however, can often lead to contradictory statements and consequently to an inconsistent program. Causes for potential contradictions in a program are conflicting rules. In this paper, we show how to ensure that a program $\mathcal{P}$ remains non-contradictory given any allowed set of such input data. For that, we introduce the notion of conflict-resolving $\lambda$- extensions. A conflict-resolving $\lambda$-extension for a conflicting rule $r$ is a set $\lambda$ of (default) literals such that extending the body of $r$ by $\lambda$ resolves all conflicts of $r$ at once. We investigate the properties that suitable $\lambda$-extensions should possess and building on that, we develop a strategy to compute all such conflict-resolving $\lambda$-extensions for each conflicting rule in $\mathcal{P}$. We show that by implementing a conflict resolution process that successively resolves conflicts using $\lambda$-extensions eventually yields a program that remains non-contradictory given any allowed set of input data.

Summary

We haven't generated a summary for this paper yet.