Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A User-Centered Investigation of Personal Music Tours (2208.07807v1)

Published 16 Aug 2022 in cs.IR

Abstract: Streaming services use recommender systems to surface the right music to users. Playlists are a popular way to present music in a list-like fashion, ie as a plain list of songs. An alternative are tours, where the songs alternate segues, which explain the connections between consecutive songs. Tours address the user need of seeking background information about songs, and are found to be superior to playlists, given the right user context. In this work, we provide, for the first time, a user-centered evaluation of two tour-generation algorithms (Greedy and Optimal) using semi-structured interviews. We assess the algorithms, we discuss attributes of the tours that the algorithms produce, we identify which attributes are desirable and which are not, and we enumerate several possible improvements to the algorithms, along with practical suggestions on how to implement the improvements. Our main findings are that Greedy generates more likeable tours than Optimal, and that three important attributes of tours are segue diversity, song arrangement and song familiarity. More generally, we provide insights into how to present music to users, which could inform the design of user-centered recommender systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.