Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Three New Arnoldi-Type Methods for the Quadratic Eigenvalue Problem in Rotor Dynamics (2208.07742v1)

Published 16 Aug 2022 in math.NA and cs.NA

Abstract: Three new Arnoldi-type methods are presented to accelerate the modal analysis and critical speed analysis of the damped rotor dynamics finite element (FE) model. They are the linearized quadratic eigenvalue problem (QEP) Arnoldi method, the QEP Arnoldi method, and the truncated generalized standard eigenvalue problem (SEP) Arnoldi method. And, they correspond to three reduction subspaces, including the linearized QEP Krylov subspace, the QEP Krylov subspace, and the truncated generalized SEP Krylov subspace, where the first subspace is also used in the existing Arnoldi-type methods. The numerical examples constructed by a turbofan engine low-pressure (LP) rotor demonstrate that our proposed three Arnoldi-type methods are more accurate than the existing Arnoldi-type methods.

Summary

We haven't generated a summary for this paper yet.