Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Tool for Neural Network Global Robustness Certification and Training (2208.07289v1)

Published 15 Aug 2022 in cs.LG

Abstract: With the increment of interest in leveraging machine learning technology in safety-critical systems, the robustness of neural networks under external disturbance receives more and more concerns. Global robustness is a robustness property defined on the entire input domain. And a certified globally robust network can ensure its robustness on any possible network input. However, the state-of-the-art global robustness certification algorithm can only certify networks with at most several thousand neurons. In this paper, we propose the GPU-supported global robustness certification framework GROCET, which is more efficient than the previous optimization-based certification approach. Moreover, GROCET provides differentiable global robustness, which is leveraged in the training of globally robust neural networks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.