Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degree of Convexity and Expected Distances in Polygons (2208.07106v2)

Published 15 Aug 2022 in cs.CG and math.MG

Abstract: We present an algorithm for computing the so-called Beer-index of a polygon $P$ in $O(n2)$ time, where $n$ is the number of corners. The polygon $P$ may have holes. The Beer-index is the probability that two points chosen independently and uniformly at random in $P$ can see each other. Given a finite set $M$ of $m$ points in a simple polygon $P$, we also show how the number of pairs in $M$ that see each other can be computed in $O(n\log n+m{4/3}\log\alpha m\log n)$ time, where $\alpha<1.78$ is a constant. We likewise study the problem of computing the expected geodesic distance between two points chosen independently and uniformly at random in a simple polygon $P$. We show how the expected $L_1$-distance can be computed in optimal $O(n)$ time by a conceptually very simple algorithm. We then describe an algorithm that outputs a closed-form expression for the expected $L_2$-distance in $O(n2)$ time.

Citations (1)

Summary

We haven't generated a summary for this paper yet.