Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The reproducing kernel Hilbert spaces underlying linear SDE Estimation, Kalman filtering and their relation to optimal control (2208.07030v2)

Published 15 Aug 2022 in math.OC and math.PR

Abstract: It is often said that control and estimation problems are in duality. Recently, in (Aubin-Frankowski,2021), we found new reproducing kernels in Linear-Quadratic optimal control by focusing on the Hilbert space of controlled trajectories, allowing for a convenient handling of state constraints and meeting points. We now extend this viewpoint to estimation problems where it is known that kernels are the covariances of stochastic processes. Here, the Markovian Gaussian processes stem from the linear stochastic differential equations describing the continuous-time dynamics and observations. Taking extensive care to require minimal invertibility requirements on the operators, we give novel explicit formulas for these covariances. We also determine their reproducing kernel Hilbert spaces, stressing the symmetries between a space of forward-time trajectories and a space of backward-time information vectors. The two spaces play an analogue role for filtering to Sobolev spaces in variational analysis, and allow to recover the Kalman estimate through a direct variational argument. For comparison, we then recover the Kalman filter and smoother formulas through more classical arguments based on the innovation process. Extension to discrete-time observations or infinite-dimensional state, tough technical, would be straightforward.

Summary

We haven't generated a summary for this paper yet.