Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a conjecture of R. M. Murty and V. K. Murty (2208.06704v1)

Published 13 Aug 2022 in math.NT

Abstract: Let $\omega*(n)$ be the number of primes $p$ such that $p-1$ divides $n$. Recently, R. M. Murty and V. K. Murty proved that $$x(\log\log x)3\ll\sum_{n\le x}\omega*(n)2\ll x\log x.$$ They further conjectured that there is some positive constant $C$ such that $$\sum_{n\le x}\omega*(n)2\sim Cx\log x$$ as $x\rightarrow \infty$. In this short note, we give the correct order of the sum by showing that $$\sum_{n\le x}\omega*(n)2\asymp x\log x.$$

Summary

We haven't generated a summary for this paper yet.