Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MaskBlock: Transferable Adversarial Examples with Bayes Approach (2208.06538v1)

Published 13 Aug 2022 in cs.LG, cs.CR, and cs.CV

Abstract: The transferability of adversarial examples (AEs) across diverse models is of critical importance for black-box adversarial attacks, where attackers cannot access the information about black-box models. However, crafted AEs always present poor transferability. In this paper, by regarding the transferability of AEs as generalization ability of the model, we reveal that vanilla black-box attacks craft AEs via solving a maximum likelihood estimation (MLE) problem. For MLE, the results probably are model-specific local optimum when available data is small, i.e., limiting the transferability of AEs. By contrast, we re-formulate crafting transferable AEs as the maximizing a posteriori probability estimation problem, which is an effective approach to boost the generalization of results with limited available data. Because Bayes posterior inference is commonly intractable, a simple yet effective method called MaskBlock is developed to approximately estimate. Moreover, we show that the formulated framework is a generalization version for various attack methods. Extensive experiments illustrate MaskBlock can significantly improve the transferability of crafted adversarial examples by up to about 20%.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com