Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Quantitative bounds in the central limit theorem for $m$-dependent random variables (2208.06351v1)

Published 12 Aug 2022 in math.PR

Abstract: For each $n\ge 1$, let $X_{n,1},\ldots,X_{n,N_n}$ be real random variables and $S_n=\sum_{i=1}{N_n}X_{n,i}$. Let $m_n\ge 1$ be an integer. Suppose $(X_{n,1},\ldots,X_{n,N_n})$ is $m_n$-dependent, $E(X_{ni})=0$, $E(X_{ni}2)<\infty$ and $\sigma_n2:=E(S_n2)>0$ for all $n$ and $i$. Then, \begin{gather*} d_W\Bigl(\frac{S_n}{\sigma_n},\,Z\Bigr)\le 30\,\bigl{c{1/3}+12\,U_n(c/2){1/2}\bigr}\quad\quad\text{for all }n\ge 1\text{ and }c>0, \end{gather*} where $d_W$ is Wasserstein distance, $Z$ a standard normal random variable and $$U_n(c)=\frac{m_n}{\sigma_n2}\,\sum_{i=1}{N_n}E\Bigl[X_{n,i}2\,1\bigl{\abs{X_{n,i}}>c\,\sigma_n/m_n\bigr}\Bigr].$$ Among other things, this estimate of $d_W\bigl(S_n/\sigma_n,\,Z\bigr)$ yields a similar estimate of $d_{TV}\bigl(S_n/\sigma_n,\,Z\bigr)$ where $d_{TV}$ is total variation distance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.