Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 49 tok/s Pro
GPT-4o 108 tok/s
GPT OSS 120B 468 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Data-driven modeling of hypersonic reentry flow with heat and mass transfer (2208.06240v3)

Published 12 Aug 2022 in physics.flu-dyn and physics.comp-ph

Abstract: The entry phase constitutes a design driver for aerospace systems that include such a critical step. This phase is characterized by hypersonic flows encompassing multiscale phenomena that require advanced modeling capabilities. However, since high fidelity simulations are often computationally prohibitive, simplified models are needed in multidisciplinary analyses requiring fast predictions. This work proposes data-driven surrogate models to predict the flow, and mixture properties along the stagnation streamline of hypersonic flows past spherical objects. Surrogate models are designed to predict velocity, pressure, temperature, density and air composition as a function of the object's radius, velocity, reentry altitude and surface temperature. These models are trained with data produced by numerical simulation of the quasi-one-dimensional Navier-Stokes formulation and a selected Earth atmospheric model. Physics-constrained parametric functions are constructed for each flow variable of interest, and artificial neural networks are used to map the model parameters to the model's inputs. Surrogate models were also developed to predict surface quantities of interest for the case of nonreacting or ablative carbon-based surfaces, providing alternatives to semiempirical correlations. A validation study is presented for all the developed models, and their predictive capabilities are showcased along selected reentry trajectories of space debris from low-Earth orbits.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube