Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Degenerate r-Bell polynomials arising from degenerate normal odering (2208.05465v1)

Published 10 Aug 2022 in math.NT

Abstract: Recently, Kim-Kim introduced the degenerate r-Bell polynomials and investigated some results which are derived from umbral calculus. The aim of this paper is to study some properties of the degenerate r-Bell polynomials and numbers via boson operators. In particular, we obtain two expressions for the generating function of the degenerate r-Bell polynomials in |z| , and a recurrence relation and Dobinski-like formula for the degenerate r-Bell numbers. These are derived from the degenerate normal ordering of a degenerate integral power of the number operator in terms of boson operators where the degenerate r-Stirling numbers of the second kind appear as the coefficients.

Summary

We haven't generated a summary for this paper yet.