Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Reduced-Complexity Maximum-Likelihood Detection with a sub-optimal BER Requirement (2208.05194v1)

Published 10 Aug 2022 in cs.IT, eess.SP, and math.IT

Abstract: Maximum likelihood (ML) detection is an optimal signal detection scheme, which is often difficult to implement due to its high computational complexity, especially in a multiple-input multiple-output (MIMO) scenario. In a system with $N_t$ transmit antennas employing $M$-ary modulation, the ML-MIMO detector requires $M{N_t}$ cost function (CF) evaluations followed by a search operation for detecting the symbol with the minimum CF value. However, a practical system needs the bit-error ratio (BER) to be application-dependent which could be sub-optimal. This implies that it may not be necessary to have the minimal CF solution all the time. Rather it is desirable to search for a solution that meets the required sub-optimal BER. In this work, we propose a new detector design for a SISO/MIMO system by obtaining the relation between BER and CF which also improves the computational complexity of the ML detector for a sub-optimal BER.

Summary

We haven't generated a summary for this paper yet.