Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computationally Identifying Funneling and Focusing Questions in Classroom Discourse (2208.04715v1)

Published 8 Jul 2022 in cs.CY, cs.CL, and cs.LG

Abstract: Responsive teaching is a highly effective strategy that promotes student learning. In math classrooms, teachers might "funnel" students towards a normative answer or "focus" students to reflect on their own thinking, deepening their understanding of math concepts. When teachers focus, they treat students' contributions as resources for collective sensemaking, and thereby significantly improve students' achievement and confidence in mathematics. We propose the task of computationally detecting funneling and focusing questions in classroom discourse. We do so by creating and releasing an annotated dataset of 2,348 teacher utterances labeled for funneling and focusing questions, or neither. We introduce supervised and unsupervised approaches to differentiating these questions. Our best model, a supervised RoBERTa model fine-tuned on our dataset, has a strong linear correlation of .76 with human expert labels and with positive educational outcomes, including math instruction quality and student achievement, showing the model's potential for use in automated teacher feedback tools. Our unsupervised measures show significant but weaker correlations with human labels and outcomes, and they highlight interesting linguistic patterns of funneling and focusing questions. The high performance of the supervised measure indicates its promise for supporting teachers in their instruction.

Citations (21)

Summary

We haven't generated a summary for this paper yet.