2000 character limit reached
Emotion Detection From Tweets Using a BERT and SVM Ensemble Model (2208.04547v1)
Published 9 Aug 2022 in cs.CL
Abstract: Automatic identification of emotions expressed in Twitter data has a wide range of applications. We create a well-balanced dataset by adding a neutral class to a benchmark dataset consisting of four emotions: fear, sadness, joy, and anger. On this extended dataset, we investigate the use of Support Vector Machine (SVM) and Bidirectional Encoder Representations from Transformers (BERT) for emotion recognition. We propose a novel ensemble model by combining the two BERT and SVM models. Experiments show that the proposed model achieves a state-of-the-art accuracy of 0.91 on emotion recognition in tweets.