Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Embarrassingly Easy but Strong Baseline for Nested Named Entity Recognition (2208.04534v3)

Published 9 Aug 2022 in cs.CL

Abstract: Named entity recognition (NER) is the task to detect and classify the entity spans in the text. When entity spans overlap between each other, this problem is named as nested NER. Span-based methods have been widely used to tackle the nested NER. Most of these methods will get a score $n \times n$ matrix, where $n$ means the length of sentence, and each entry corresponds to a span. However, previous work ignores spatial relations in the score matrix. In this paper, we propose using Convolutional Neural Network (CNN) to model these spatial relations in the score matrix. Despite being simple, experiments in three commonly used nested NER datasets show that our model surpasses several recently proposed methods with the same pre-trained encoders. Further analysis shows that using CNN can help the model find more nested entities. Besides, we found that different papers used different sentence tokenizations for the three nested NER datasets, which will influence the comparison. Thus, we release a pre-processing script to facilitate future comparison.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hang Yan (86 papers)
  2. Yu Sun (226 papers)
  3. Xiaonan Li (48 papers)
  4. Xipeng Qiu (257 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.