Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptivity Gaps for the Stochastic Boolean Function Evaluation Problem (2208.03810v1)

Published 7 Aug 2022 in cs.DS

Abstract: We consider the Stochastic Boolean Function Evaluation (SBFE) problem where the task is to efficiently evaluate a known Boolean function $f$ on an unknown bit string $x$ of length $n$. We determine $f(x)$ by sequentially testing the variables of $x$, each of which is associated with a cost of testing and an independent probability of being true. If a strategy for solving the problem is adaptive in the sense that its next test can depend on the outcomes of previous tests, it has lower expected cost but may take up to exponential space to store. In contrast, a non-adaptive strategy may have higher expected cost but can be stored in linear space and benefit from parallel resources. The adaptivity gap, the ratio between the expected cost of the optimal non-adaptive and adaptive strategies, is a measure of the benefit of adaptivity. We present lower bounds on the adaptivity gap for the SBFE problem for popular classes of Boolean functions, including read-once DNF formulas, read-once formulas, and general DNFs. Our bounds range from $\Omega(\log n)$ to $\Omega(n/\log n)$, contrasting with recent $O(1)$ gaps shown for symmetric functions and linear threshold functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.