Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating discrete dislocation dynamics simulations with graph neural networks (2208.03296v2)

Published 5 Aug 2022 in cond-mat.mtrl-sci and cs.LG

Abstract: Discrete dislocation dynamics (DDD) is a widely employed computational method to study plasticity at the mesoscale that connects the motion of dislocation lines to the macroscopic response of crystalline materials. However, the computational cost of DDD simulations remains a bottleneck that limits its range of applicability. Here, we introduce a new DDD-GNN framework in which the expensive time-integration of dislocation motion is entirely substituted by a graph neural network (GNN) model trained on DDD trajectories. As a first application, we demonstrate the feasibility and potential of our method on a simple yet relevant model of a dislocation line gliding through an array of obstacles. We show that the DDD-GNN model is stable and reproduces very well unseen ground-truth DDD simulation responses for a range of straining rates and obstacle densities, without the need to explicitly compute nodal forces or dislocation mobilities during time-integration. Our approach opens new promising avenues to accelerate DDD simulations and to incorporate more complex dislocation motion behaviors.

Citations (9)

Summary

We haven't generated a summary for this paper yet.