Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary Classification with Positive Labeling Sources (2208.01704v1)

Published 2 Aug 2022 in cs.LG

Abstract: To create a large amount of training labels for machine learning models effectively and efficiently, researchers have turned to Weak Supervision (WS), which uses programmatic labeling sources rather than manual annotation. Existing works of WS for binary classification typically assume the presence of labeling sources that are able to assign both positive and negative labels to data in roughly balanced proportions. However, for many tasks of interest where there is a minority positive class, negative examples could be too diverse for developers to generate indicative labeling sources. Thus, in this work, we study the application of WS on binary classification tasks with positive labeling sources only. We propose WEAPO, a simple yet competitive WS method for producing training labels without negative labeling sources. On 10 benchmark datasets, we show WEAPO achieves the highest averaged performance in terms of both the quality of synthesized labels and the performance of the final classifier supervised with these labels. We incorporated the implementation of \method into WRENCH, an existing benchmarking platform.

Citations (2)

Summary

We haven't generated a summary for this paper yet.