Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Adversarial Robustness of Vision Transformers via Cauchy Problem (2208.00906v1)

Published 1 Aug 2022 in cs.CV and cs.LG

Abstract: Recent research on the robustness of deep learning has shown that Vision Transformers (ViTs) surpass the Convolutional Neural Networks (CNNs) under some perturbations, e.g., natural corruption, adversarial attacks, etc. Some papers argue that the superior robustness of ViT comes from the segmentation of its input images; others say that the Multi-head Self-Attention (MSA) is the key to preserving the robustness. In this paper, we aim to introduce a principled and unified theoretical framework to investigate such an argument on ViT's robustness. We first theoretically prove that, unlike Transformers in Natural Language Processing, ViTs are Lipschitz continuous. Then we theoretically analyze the adversarial robustness of ViTs from the perspective of the Cauchy Problem, via which we can quantify how the robustness propagates through layers. We demonstrate that the first and last layers are the critical factors to affect the robustness of ViTs. Furthermore, based on our theory, we empirically show that unlike the claims from existing research, MSA only contributes to the adversarial robustness of ViTs under weak adversarial attacks, e.g., FGSM, and surprisingly, MSA actually comprises the model's adversarial robustness under stronger attacks, e.g., PGD attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Zheng Wang (400 papers)
  2. Wenjie Ruan (42 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.