Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Graph Neural Networks for Program Termination (2207.14648v1)

Published 28 Jul 2022 in cs.SE, cs.AI, and cs.LG

Abstract: Termination analyses investigate the termination behavior of programs, intending to detect nontermination, which is known to cause a variety of program bugs (e.g. hanging programs, denial-of-service vulnerabilities). Beyond formal approaches, various attempts have been made to estimate the termination behavior of programs using neural networks. However, the majority of these approaches continue to rely on formal methods to provide strong soundness guarantees and consequently suffer from similar limitations. In this paper, we move away from formal methods and embrace the stochastic nature of machine learning models. Instead of aiming for rigorous guarantees that can be interpreted by solvers, our objective is to provide an estimation of a program's termination behavior and of the likely reason for nontermination (when applicable) that a programmer can use for debugging purposes. Compared to previous approaches using neural networks for program termination, we also take advantage of the graph representation of programs by employing Graph Neural Networks. To further assist programmers in understanding and debugging nontermination bugs, we adapt the notions of attention and semantic segmentation, previously used for other application domains, to programs. Overall, we designed and implemented classifiers for program termination based on Graph Convolutional Networks and Graph Attention Networks, as well as a semantic segmentation Graph Neural Network that localizes AST nodes likely to cause nontermination. We also illustrated how the information provided by semantic segmentation can be combined with program slicing to further aid debugging.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yoav Alon (5 papers)
  2. Cristina David (20 papers)

Summary

We haven't generated a summary for this paper yet.