Quantum Vulnerability Analysis to Accurate Estimate the Quantum Algorithm Success Rate (2207.14446v2)
Abstract: While quantum computers provide exciting opportunities for information processing, they currently suffer from noise during computation that is not fully understood. Incomplete noise models have led to discrepancies between quantum program success rate (SR) estimates and actual machine outcomes. For example, the estimated probability of success (ESP) is the state-of-the-art metric used to gauge quantum program performance. The ESP suffers poor prediction since it fails to account for the unique combination of circuit structure, quantum state, and quantum computer properties specific to each program execution. Thus, an urgent need exists for a systematic approach that can elucidate various noise impacts and accurately and robustly predict quantum computer success rates, emphasizing application and device scaling. In this article, we propose quantum vulnerability analysis (QVA) to systematically quantify the error impact on quantum applications and address the gap between current success rate (SR) estimators and real quantum computer results. The QVA determines the cumulative quantum vulnerability (CQV) of the target quantum computation, which quantifies the quantum error impact based on the entire algorithm applied to the target quantum machine. By evaluating the CQV with well-known benchmarks on three 27-qubit quantum computers, the CQV success estimation outperforms the estimated probability of success state-of-the-art prediction technique by achieving on average six times less relative prediction error, with best cases at 30 times, for benchmarks with a real SR rate above 0.1%. Direct application of QVA has been provided that helps researchers choose a promising compiling strategy at compile time.
- “Ibm quantum systems,” https://quantum-computing.ibm.com/services?systems=all, accessed: 2022-07-28.
- N. Acharya and S. M. Saeed, “A lightweight approach to detect malicious/unexpected changes in the error rates of nisq computers,” in 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). IEEE, 2020, pp. 1–9.
- N. Acharya and S.-M. Saeed, “Automated flag qubit insertion for reliable quantum circuit output,” in 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2021, pp. 431–436.
- F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al., “Quantum supremacy using a programmable superconducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.
- J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature, vol. 453, no. 7198, pp. 1031–1042, 2008.
- L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson, D. Schuster, J. Majer, A. Blais, L. Frunzio, S. Girvin et al., “Demonstration of two-qubit algorithms with a superconducting quantum processor,” Nature, vol. 460, no. 7252, pp. 240–244, 2009.
- Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson, and F. T. Chong, “Systematic crosstalk mitigation for superconducting qubits via frequency-aware compilation,” in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020, pp. 201–214.
- X. Fu, L. Riesebos, M. Rol, J. van Straten, J. Van Someren, N. Khammassi, I. Ashraf, R. Vermeulen, V. Newsum, K. Loh, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, “eqasm: An executable quantum instruction set architecture,” in 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2019, pp. 224–237.
- X. Fu, M. Rol, C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. Vermeulen, J. de Sterke, W. Vlothuizen, R. Schouten, L. DiCarlo, and K. Bertels, “A microarchitecture for a superconducting quantum processor,” IEEE Micro, vol. 38, no. 3, pp. 40–47, 2018.
- X. Fu, M. A. Rol, C. C. Bultink, J. Van Someren, N. Khammassi, I. Ashraf, R. Vermeulen, J. De Sterke, W. Vlothuizen, R. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels, “An experimental microarchitecture for a superconducting quantum processor,” in Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, 2017, pp. 813–825.
- J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost, J. Home, E. Knill, D. Leibfried et al., “Randomized benchmarking of multiqubit gates,” Physical review letters, vol. 108, no. 26, p. 260503, 2012.
- J. M. Gambetta, A. D. Córcoles, S. T. Merkel, B. R. Johnson, J. A. Smolin, J. M. Chow, C. A. Ryan, C. Rigetti, S. Poletto, T. A. Ohki et al., “Characterization of addressability by simultaneous randomized benchmarking,” Physical review letters, vol. 109, no. 24, p. 240504, 2012.
- P. Gokhale, O. Angiuli, Y. Ding, K. Gui, T. Tomesh, M. Suchara, M. Martonosi, and F. T. Chong, “Optimization of simultaneous measurement for variational quantum eigensolver applications,” in 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, 2020, pp. 379–390.
- P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong, “Optimized quantum compilation for near-term algorithms with openpulse,” in 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). IEEE, 2020, pp. 186–200.
- I. Q. Group, “Open-source quantum development,” https://qiskit.org/, retrieved on 04-16-2021.
- L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, 1996, pp. 212–219.
- IBM, “Ibm quantum,” https://quantum-computing.ibm.com/, retrieved on 04-16-2021.
- K. Kechedzhi, S. Isakov, S. Mandrà, B. Villalonga, X. Mi, S. Boixo, and V. Smelyanskiy, “Effective quantum volume, fidelity and computational cost of noisy quantum processing experiments,” arXiv preprint arXiv:2306.15970, 2023.
- R. LaRose, A. Mari, S. Kaiser, P. J. Karalekas, A. A. Alves, P. Czarnik, M. El Mandouh, M. H. Gordon, Y. Hindy, A. Robertson et al., “Mitiq: A software package for error mitigation on noisy quantum computers,” Quantum, vol. 6, p. 774, 2022.
- T. LeCompte, F. Qi, and L. Peng, “Robust cache-aware quantum processor layout,” in 2020 International Symposium on Reliable Distributed Systems (SRDS). IEEE, 2020, pp. 276–287.
- T. LeCompte, F. Qi, X. Yuan, N.-F. Tzeng, M. H. Najaf, and L. Peng, “Graph neural network assisted quantum compilation for qubit allocation,” in ACM Great Lakes Symposium on VLSI (GLSVLSI). ACM, 2023.
- T. LeCompte, F. Qi, X. Yuan, N.-F. Tzeng, M. H. Najafi, and L. Peng, “Machine learning-based qubit allocation for error reduction in quantum circuits,” IEEE Transactions on Quantum Engineering, 2023.
- G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, 2019, pp. 1001–1014.
- G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “Paulihedral: a generalized block-wise compiler optimization framework for quantum simulation kernels,” in Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, 2022, pp. 554–569.
- J. Liu and H. Zhou, “Reliability modeling of nisq-era quantum computers,” in 2020 IEEE international symposium on workload characterization (IISWC). IEEE, 2020, pp. 94–105.
- E. Magesan, J. Gambetta, and J. Emerson, “Robust randomized benchmarking of quantum processes,” arXiv preprint arXiv:1009.3639, 2010.
- E. Magesan, J. M. Gambetta, and J. Emerson, “Characterizing quantum gates via randomized benchmarking,” Physical Review A, vol. 85, no. 4, p. 042311, 2012.
- J. Majer, J. Chow, J. Gambetta, J. Koch, B. Johnson, J. Schreier, L. Frunzio, D. Schuster, A. A. Houck, A. Wallraff et al., “Coupling superconducting qubits via a cavity bus,” Nature, vol. 449, no. 7161, pp. 443–447, 2007.
- A. Matsuo, W. Hattori, and S. Yamashita, “Reducing the overhead of mapping quantum circuits to ibm q system,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019, pp. 1–5.
- N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn et al., “Quantum optimization using variational algorithms on near-term quantum devices,” Quantum Science and Technology, vol. 3, no. 3, p. 030503, 2018.
- P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi, “Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, 2019, pp. 1015–1029.
- P. Murali, N. M. Linke, M. Martonosi, A. J. Abhari, N. H. Nguyen, and C. H. Alderete, “Architecting noisy intermediate-scale quantum computers: A real-system study,” IEEE Micro, vol. 40, no. 3, pp. 73–80, 2020.
- P. Murali, N. M. Linke, M. Martonosi, A.-J. Abhari, N. H. Nguyen, and C. H. Alderete, “Full-stack, real-system quantum computer studies: Architectural comparisons and design insights,” in 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2019, pp. 527–540.
- P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, “Software mitigation of crosstalk on noisy intermediate-scale quantum computers,” in Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, 2020, pp. 1001–1016.
- M. A. Nielsen and I. Chuang, “Quantum computation and quantum information,” 2002.
- S. Nishio, Y. Pan, T. Satoh, H. Amano, and R. V. Meter, “Extracting success from ibm’s 20-qubit machines using error-aware compilation,” ACM Journal on Emerging Technologies in Computing Systems (JETC), vol. 16, no. 3, pp. 1–25, 2020.
- D. Oliveira, E. Giusto, B. Baheri, Q. Guan, B. Montrucchio, and P. Rech, “A systematic methodology to compute the quantum vulnerability factors for quantum circuits,” IEEE Transactions on Dependable and Secure Computing, 2023.
- T. Patel, B. Li, R. B. Roy, and D. Tiwari, “{{\{{UREQA}}\}}: Leveraging {{\{{Operation-Aware}}\}} error rates for effective quantum circuit mapping on {{\{{NISQ-Era}}\}} quantum computers,” in 2020 USENIX Annual Technical Conference (USENIX ATC 20), 2020, pp. 705–711.
- J. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Physical Review Letters, vol. 78, no. 2, p. 390, 1997.
- J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
- S. Resch, S. Tannu, U. R. Karpuzcu, and M. Qureshi, “A day in the life of a quantum error,” IEEE Computer Architecture Letters, vol. 20, no. 1, pp. 13–16, 2020.
- F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80, 2008.
- Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann, and F. T. Chong, “Optimized compilation of aggregated instructions for realistic quantum computers,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, 2019, pp. 1031–1044.
- P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.
- R. Stassi, M. Cirio, and F. Nori, “Scalable quantum computer with superconducting circuits in the ultrastrong coupling regime,” npj Quantum Information, vol. 6, no. 1, pp. 1–6, 2020.
- S. Tannu and M. Qureshi, “Not all qubits are created equal: A case for variability-aware policies for nisq-era quantum computers,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, 2019, pp. 987–999.
- S. S. Tannu and M. Qureshi, “Ensemble of diverse mappings: Improving reliability of quantum computers by orchestrating dissimilar mistakes,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019, pp. 253–265.
- S. S. Tannu and M. K. Qureshi, “Mitigating measurement errors in quantum computers by exploiting state-dependent bias,” in Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019, pp. 279–290.
Collections
Sign up for free to add this paper to one or more collections.