Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
25 tokens/sec
GPT-5 High Premium
22 tokens/sec
GPT-4o
99 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
457 tokens/sec
Kimi K2 via Groq Premium
252 tokens/sec
2000 character limit reached

Ties in ranking scores can be treated as weighted samples (2207.13632v2)

Published 27 Jul 2022 in stat.ME

Abstract: Prior proposals for cumulative statistics suggest making tiny random perturbations to the scores (independent variables in a regression) in order to ensure the scores' uniqueness. Uniqueness means that no score for any member of the population or subpopulation being analyzed is exactly equal to any other member's score. It turns out to be possible to construct from the original data a weighted data set that modifies the scores, weights, and responses (dependent variables in the regression) such that the new scores are unique and (together with the new weights and responses) yield the desired cumulative statistics for the original data. This reduces the problem of analyzing data with scores that may not be unique to the problem of analyzing a weighted data set with scores that are unique by construction. Recent proposals for cumulative statistics have already detailed how to process weighted samples whose scores are unique.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube