Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving Poisson's equation for birth-death chains: Structure, instability, and accurate approximation (2207.13550v1)

Published 27 Jul 2022 in math.PR and math.OC

Abstract: Poisson's equation plays a fundamental role as a tool for performance evaluation and optimization of Markov chains. For continuous-time birth-death chains with possibly unbounded transition and cost rates as addressed herein, when analytical solutions are unavailable its numerical solution can in theory be obtained by a simple forward recurrence. Yet, this may suffer from numerical instability, which can hide the structure of exact solutions. This paper presents three main contributions: (1) it establishes a structural result (convexity of the relative cost function) under mild conditions on transition and cost rates, which is relevant for proving structural properties of optimal policies in Markov decision models; (2) it elucidates the root cause, extent and prevalence of instability in numerical solutions by standard forward recurrence; and (3) it presents a novel forward-backward recurrence scheme to compute accurate numerical solutions. The results are applied to the accurate evaluation of the bias and the asymptotic variance, and are illustrated in an example.

Summary

We haven't generated a summary for this paper yet.