Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dimension drop for diagonalizable flows on homogeneous spaces (2207.13155v2)

Published 26 Jul 2022 in math.DS and math.NT

Abstract: Let $X = G/\Gamma$, where $G$ is a Lie group and $\Gamma$ is a lattice in $G$, let $O$ be an open subset of $X$, and let $F = {g_t: t\ge 0}$ be a one-parameter subsemigroup of $G$. Consider the set of points in $X$ whose $F$-orbit misses $O$; it has measure zero if the flow is ergodic. It has been conjectured that this set has Hausdorff dimension strictly smaller than the dimension of $X$. This conjecture is proved when $X$ is compact or when $G$ is a simple Lie group of real rank $1$, or, most recently, for certain special flows on the space of lattices. In this paper we prove this conjecture for arbitrary $\operatorname{Ad}$-diagonalizable flows on irreducible quotients of semisimple Lie groups. The proof uses exponential mixing of the flow together with the method of integral inequalities for height functions on $G/\Gamma$. We also derive an application to jointly Dirichlet-Improvable systems of linear forms.

Summary

We haven't generated a summary for this paper yet.