Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representing Random Utility Choice Models with Neural Networks (2207.12877v2)

Published 26 Jul 2022 in cs.LG, math.OC, and stat.ML

Abstract: Motivated by the successes of deep learning, we propose a class of neural network-based discrete choice models, called RUMnets, inspired by the random utility maximization (RUM) framework. This model formulates the agents' random utility function using a sample average approximation. We show that RUMnets sharply approximate the class of RUM discrete choice models: any model derived from random utility maximization has choice probabilities that can be approximated arbitrarily closely by a RUMnet. Reciprocally, any RUMnet is consistent with the RUM principle. We derive an upper bound on the generalization error of RUMnets fitted on choice data, and gain theoretical insights on their ability to predict choices on new, unseen data depending on critical parameters of the dataset and architecture. By leveraging open-source libraries for neural networks, we find that RUMnets are competitive against several choice modeling and machine learning methods in terms of predictive accuracy on two real-world datasets.

Citations (12)

Summary

We haven't generated a summary for this paper yet.