Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Large-Scale Low-Rank Gaussian Process Prediction with Support Points (2207.12804v2)

Published 26 Jul 2022 in stat.ME

Abstract: Low-rank approximation is a popular strategy to tackle the "big n problem" associated with large-scale Gaussian process regressions. Basis functions for developing low-rank structures are crucial and should be carefully specified. Predictive processes simplify the problem by inducing basis functions with a covariance function and a set of knots. The existing literature suggests certain practical implementations of knot selection and covariance estimation; however, theoretical foundations explaining the influence of these two factors on predictive processes are lacking. In this paper, the asymptotic prediction performance of the predictive process and Gaussian process predictions is derived and the impacts of the selected knots and estimated covariance are studied. We suggest the use of support points as knots, which best represent data locations. Extensive simulation studies demonstrate the superiority of support points and verify our theoretical results. Real data of precipitation and ozone are used as examples, and the efficiency of our method over other widely used low-rank approximation methods is verified.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.